Q.P. Code: 11321

Third Semester B.Sc. Degree Examination, November/December 2019

(CBCS – Freshers – Semester Scheme)

Physics

Paper III — ELECTRICITY AND MAGNETISM

Instructions to Candidates:

Time: 3 Hours!

3

0

[Max. Marks: 70

- 1) Answer any Five questions from each Part.
- Use of non-programmable Scientific calculator/Mathematical tables are 2) allowed.

PART - A

 $(5 \times 8 = 40)$ Answer any FIVE questions. Each question carries 8 marks:

- How do you convert the current source into voltage source? (a) 1.
- (2 + 6)State and prove super position theorem. (b)
- Obtain an expression for the self inductance of a solenoid. 2. (a)
 - Derive an expression for the growth of charge in series CR circuit connected (b) to a dc source. Represent it graphically.
- Derive an expression for the force between two parallel current carrying (a) 3. conductors.
 - Obtain an expression for magnetic field at a point near a straight conductor carrying current using Biot-Savart's law.
- Obtain an expression for the magnetic field on the axis of a solenoid (a) carrying current.
 - Mention any two conditions for Ballistic Galvanometer to be dead beat. (b) (6 + 2)
- Explain briefly surface integral of a function. (a) 5.
 - Derive Maxwell's equation $\nabla . B = 0$ and write its physical significance. (b)

(2 + 6)

Q.P. Code: 11321

- 6. (a) Derive the relation between refractive index and permittivity of a medium.
 - (b) Show that the electromagnetic waves are transverse in nature. (2 + 6)
- 7. Derive expressions with diagrams for current, phase angle and impedance of series LCR ac circuit by J operator method. (8)
- 8. (a) Distinguish between Seebeck effect and Thomson effect.
 - (b) Apply the principles of thermodynamics and arrive at the relation $\pi = T \left[\frac{dE}{dT} \right]$ where the symbols have their usual meaning. (3 + 5)

PART - B

Solve any **FIVE** problems. Each problem carries **4** marks :

 $(5 \times 4 = 20)$

9. For the circuit shown below, calculate the value of R_L to transfer maximum power and also the maximum power.

- 10. A coil having a resistance of 120 Ω and inductance of 24 H is connected across 24 V battery. Find the current after 0.2 seconds.
- 11. A capacitor of capacitance 1 μ F is discharged through a high resistance of 10 M Ω . Find the time taken for half the charge on the capacitor to leak.
- 12. Each two coils of a Helmholtz Galvanometer contains 50 turns of wire of mean radius 0.2 m. When a current of 0.1 A is passed through the coil a deflection of 45° is obtained. Calculate the horizontal component of earth's magnetic field. Given $\mu_0 = 4\pi \times 10^{-7} \, \mathrm{Hm}^{-1}$.
- 13. Find constants (a, b, c) so that the vector

$$A = \hat{i}(x + 2y + az) + \hat{j}(6x - 3y - z) + \hat{k}(4x + cy + 2z)$$
 is irrotational.

Q.P. Code: 11321

3

0

3

3

5

9

9

9

9

- 14. Electromagnetic waves are propagating through a conductivity medium made up of aluminium with $\sigma=38.2\times10^6\,\mathrm{Sm^{-1}}$. Calculate the skin depth and frequency of wave having a velocity of 650 ms⁻¹. Given $\mu=\mu_0=4\pi\times10^{-7}\,\mathrm{Hm^{-1}}$.
- 15. A condenser of capacity $0.2\,\mu F$ is connected in series with a resistor to a 220 V, 50 Hz ac supply. If the potential drop across the condenser and resistor are equal in magnitude. Calculate the value of resistance and the potential drop across resistor.
- 16. The emf of a thermocouple of which one junction is at $0^{\circ}c$ and the other at $50^{\circ}C$ is $25~\mu V$. The neutral temperature is $100^{\circ}C$. Find the emf when the junctions are at $0^{\circ}C$ and $200^{\circ}C$.

PART - C

- 17. Answer any FIVE of the following. Each question carries 2 marks: (5 × 2 = 10)
 - (a) Can Thevenin's theorem be applied to nonlinear networks? Explain.
 - (b) What is the effect on frequency of oscillatory discharge in series LCR circuit if an inductor of more number of turns are used? Explain.
 - (c) Is it possible for a charge to pass through a magnetic field without getting deflected? Explain.
 - (d) Is the field produced in a toroid uniform? Explain.
 - (e) Is the displacement current and conduction current being of same magnitude for a given system? Justify.
 - (f) Is it possible to have only electric wave or magnetic wave alone propagating through space? Explain.
 - (g) Does current lags the voltage in a pure inductive circuit? Explain.
 - (h) The thermo emf of a thermocouple is very small Justify.